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Abstract 25 

Long–term data on PM2.5 chemical composition provide essential information for evaluating the effectiveness of air 

pollution control measures and understanding the evolving mechanisms of secondary species formation in the real atmosphere. 

This study presented field measurements of PM2.5 and its chemical composition at a regional background site in the Pearl River 

Delta (PRD) from 2007 to 2020. PM2.5 concentration declined significantly from 87.1 ± 15.5 μg m−3 to 34.0 ± 11.3 μg m−3 (–

4.0 μg m–3 yr–1). The proportion of secondary species increased from 57% to 73% with the improvement in air quality. Among 30 

these species, sulfate (SO4
2–) showed a sharp decline, while nitrate (NO3

–) exhibited a moderate decrease. Consequently, the 

proportion of NO3
– in 2020 doubled relative to 2007. In addition, we further found that SO4

2– reduction (–10% yr–1) lagged 

behind SO2 reduction (–13% yr–1), while NO3
− reduction (–6% yr–1) outpaced that of NO2 (–3% yr–1). These contrasting trends 

were associated with an increase in sulfur oxidation rate (SOR) and a decrease in nitrogen oxidation rate (NOR). Changes in 

PM2.5 chemical composition also influenced aerosol physicochemical properties, such as aerosol pH (0.06 yr–1), aerosol liquid 35 

water content (ALWC, –1.1 μg m–3 yr–1), and the light extinction coefficient (bext, –21.44 Mm–1 yr–1). Given important roles of 

aerosol acidity and ALWC in the heterogeneous reactions, these changes may further inhibit the formation of secondary species 

in the atmosphere, particularly SOA. 
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1. Introduction 

Ambient fine particulate matter (PM2.5) is a major air pollutant with significant implications for global climate, air quality, 40 

and human health (Burnett et al., 2018; Chen et al., 2021; Ding et al., 2021; Pye et al., 2021; Vohra et al., 2022). PM2.5 

comprises a complex mixture of primary and secondary components. Primary components, including primary organic aerosol 

(POA), elemental carbon (EC), and metal ions (e.g., K+, Ca2+, Na+, Mg2+ ), are mostly emitted from anthropogenic activities. 

Secondary components, such as secondary organic aerosols (SOA) and secondary inorganic aerosols (SIA; i.e., SO4
2–, NO3

–
, 

NH4
+), are formed through oxidation of gaseous pollutants (SO₂, NOx, and VOCs, etc.) and partition processes. China 45 

experienced rapid economic growth and urbanization in the past decades. To address severe air pollution, the Chinese 

government issued the Air Pollution Prevention and Control Action Plan in 2013 (Geng et al., 2024). As a result, the chemical 

composition of PM2.5 over China changed significantly (Geng et al., 2019). This change has an important impact on aerosol 

acidity, ALWC, and light extinction (Nguyen et al., 2016; Pye et al., 2020; Liu et al., 2022).  

Acidity, defined as pH, is a crucial aerosol property that affects human health, ecosystems and climate (Nenes et al., 50 

2020; Su et al., 2020; Song et al., 2024). Low pH increases solubility of metals associated with mineral dust (Fang et al., 2017). 

Previous epidemiological studies revealed that exposure to acidic PM2.5 is relevant to high mortality and morbidity (Gwynn et 

al., 2000; Zhang et al., 2022a). Additionally, aerosol acidity and ALWC regulate the gas–particle partitioning of semi–volatile 

gases, as well as chemical reaction rates in the atmosphere, highlighting their importance for the atmospheric lifetime of 

pollutants (Pye et al., 2020; Nenes et al., 2021). Aqueous uptake is an important pathway for formation of secondary species 55 

(Liu et al., 2021; Yu et al., 2005; Kawamura and Bikkina, 2016). As an abundant medium, ALWC can enhance their formation 

(Zheng et al., 2015; Carlton and Turpin, 2013). By modifying particle ability to be activated into cloud condensation nuclei 

(CCN), ALWC can further influence the climate system (Duan et al., 2019). Therefore, it is necessary to explore the trends of 

pH and ALWC under the change in PM2.5 chemical composition. 

Aerosol pH and ALWC are determined by the presence of acidic components (i.e., SO4
2− and NO3

−), alkaline components 60 

(i.e., NH4
+) (Seinfeld et al., 1998), and meteorological parameters, such as temperature and relative humidity. (Wang et al., 

2022a). However, aerosol acidity is more responsive to dominant chemical species rather than meteorological conditions (Wu 

et al., 2023). According to sensitivity tests, T-H2SO4 (SO2 + SO4
2-) and T-NH3 (NH3 + NH4

+) have the most dominant negative 

and positive contribution to pH variation, respectively (Wu et al., 2023). The aerosol pH exhibited noticeable spatial 

heterogeneity. For example, the pH values in North China (e.g., Beijing (3.0–4.9), Zhengzhou (4.5), Anyang (4.8)) (Liu et al., 65 

2017; Wang et al., 2020) were generally higher than those in South China (e.g., Guangzhou (-0.04–0.81), Shanghai (3.06–

3.30), South China Sea (1.7)) (Wang et al., 2022a; Zhou et al., 2022; Fu et al., 2015). This could result from the fact that SO4
2- 
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fraction was higher in southern China (Geng et al., 2017; Liu et al., 2023) and high NH3 emissions in northern China (Liu et 

al., 2023). Zhou et al. (2022) reported a downward trend of pH (from 3.33 to 3.06) at a rate of –0.24 yr–1 in the Yangtze River 

Delta (YRD) from 2011 to 2019. Conversely, Fu et al. (2015) reported an upward trend of pH (from –0.30 to 0.81) in the PRD 70 

during 2007–2012. However, this study did not cover the post–2013 period, a key period for air quality improvement. 

PM2.5 composition also affects atmospheric visibility through light scattering and absorption. Light scattering is 

dominated by hydrophilic components, such as organic mass (OM), (NH4)2SO4, and NH4NO3, while light absorption is largely 

driven by light–absorbing carbon (Wang et al., 2012). The Interagency Monitoring of Protected Visual Environments 

(IMPROVE) algorithm, developed by the U.S. Environmental Protection Agency (EPA), is a widely used tool for estimating 75 

the light extinction coefficient (bext) (Epa, 2011). However, scattering/absorbing efficiency (MSE/MAE) employed in the 

IMPROVE algorithm is an approximation and simplification based on measurements of clean areas. The hygroscopic growth 

factor (f(RH)), which has been suggested to depend on secondary inorganic fractions (e.g., sulfate, nitrate, and ammonium), 

sea salt components, and water-soluble organic carbon, is solely a function of relative humidity (RH) in the algorithm (Li et 

al., 2021). These simplifications could lead to large discrepancies in polluted regions. For instance, the deviations between 80 

observed and estimated bext values were reported as 15%, 36%, and 37% in Xi’an, Shanghai, and Guangzhou, respectively 

(Cheng et al., 2015; Cao et al., 2012; Jung et al., 2009). Thus, region-specific adjustments are necessary to reflect the impact 

of particle compositions on these parameters from site to site.   

Many long-term monitoring programs have been implemented to formulate pollution control strategies and explore 

underlying factors of aerosol properties variation. For example, the IMPROVE program in the United States, initiated in 1985, 85 

tracks visibility trends and their driving factors (Epa, 2011). The Southeastern Aerosol Research and Characterization 

(SEARCH) network, established in 1998, provides detailed insights into aerosol chemistry and precursor gases (Blanchard et 

al., 2013). In Europe, the European Monitoring and Evaluation Program (EMEP) has operated since 2004 to address air 

pollution issues related to acidification, eutrophication, and climate impacts (Emep, 2024). In China, long–term PM2.5 

monitoring began in Hong Kong, where the Environmental Protection Department (HKEPD) initiated comprehensive chemical 90 

composition measurements in 1999. Subsequent collaborations expanded the monitoring network to encompass the 

Guangdong–Hong Kong–Macao Greater Bay Area in 2015 (Hkepd, 2021; Chow et al., 2022).  

As one of the most outstanding areas for air pollution improvement, PRD first met National Ambient Air Quality 

Standards (AQS) for annual average PM2.5 (35 μg m−3) in 2015 (Department of Ecology and Environment of Guangdong 

Province, 2016). PM2.5 in the PRD (32.2–46.1 μg m−3) was significantly lower than the YRD (44.8–67.1 μg m−3), the North 95 

China Plain (NCP) (64.0–101.9 μg m−3), and other regions (45.1–65.4 μg m−3) (Zhang et al., 2019). Regarding chemical 

composition, NO3
–
 was the dominant species in the YRD and the NCP. However, OM constitutes the largest fraction in the 
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PRD, similar to other low PM2.5 areas worldwide (Geng et al., 2019; Wang et al., 2022b; Yang et al., 2023; Ming et al., 2017; 

Zhang et al., 2007). So far, long-term studies of PM2.5 chemical components in the PRD remain scarce. Fu et al. observed 

substantial reductions in OC and SO4
2– and stable NO3

– during 2007–2011, alongside increased aerosol pH and decreased light 100 

extinction (2015; 2016; Fu et al., 2014). But this study did not cover the post–2013 period, a key period for air quality 

improvement. Yan et al. (2020) conducted a meta–analysis (2004−2019), identifying three stages of decline, rise, and 

stabilization in the fractions of secondary species. Chow et al. (2022) reported the reduction in NO3
– (66%), EC (60%), hopanes 

(75%), and K+ (60%) exceeding that of PM2.5 (40%), confirming effective control of vehicular emissions and biomass burning 

in Hong Kong (2008–2017). These studies observed an unproportional relationships between SO4
2–/SO2, as well as NO3

–/NO2, 105 

but the underlying reasons remain unclear. Besides, long-term trends of aerosol acidity, ALWC, and light extinction, which 

were highly dependent on PM2.5 chemical composition, were not fully analyzed. These limitations underscore the need for a 

more comprehensive, long-term study to explore the underlying mechanisms behind these changes in the PRD. 

Our study presents a comprehensive analysis of 532 quartz filter–based PM2.5 samples collected over 14 years (2007–

2020) at a regional background station. We examined the evolving PM2.5 chemical composition, focusing on both primary and 110 

secondary species. The unproportional relationships between SO4
2–/SO2, as well as NO3

–/NO2 will be discussed. In addition, 

we also analyzed variations of aerosol pH, ALWC, and light extinction under the influence of changes in PM2.5 chemical 

composition.  

 

2. Methodology 115 

2.1 Field sampling 

The typical Asian monsoon climate influences the PRD region. In summertime, prevailing southwesterly winds bring 

humid and clean air mass from South China Sea or the northwestern Pacific Ocean. In contrast, during the fall and winter, 

prevailing northerly winds carry dry and polluted air mass from northern continent. Additionally, the region is often influenced 

by high–pressure ridges in the fall and winter, which results in a low boundary layer and a high frequency of inversion. These 120 

conditions facilitate the accumulation of pollutants. Consequently, PM2.5 and other pollutants show a distinct summer–winter 

contrast, with significantly elevated pollutant levels in fall and winter (Chow et al., 2022; Fu et al., 2014). Our field campaigns 

were mainly conducted from October to December. 

The sampling site, Wanqingsha (WQS; 22.42°N, 113.32°E), is located in a rural area of Guangzhou and the center of 

the PRD region (Fig. 1). Local anthropogenic emissions have limited influence on this site due to low traffic flow and few 125 

factories in the surrounding area. This makes it an ideal background site for investigating regional air pollution. Twenty–four–
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hour sampling was conducted using a PM2.5 sampler equipped with quartz filters (8 in.×10 in.) at a flow rate of 1.1 m3 min−1. 

The quartz filters were pre–baked at 450°C for four hours prior to field sampling and stored at −20°C after sampling until 

analysis. During the sampling periods, blank samples were collected at monthly intervals. A total of 532 samples were collected 

and analyzed in this study. Gaseous pollutants data (SO2, NO2, NO, and O3) and meteorological parameters were obtained 130 

from an air quality monitoring station operated at WQS. The gaseous pollutant data during 2012–2013 were unavailable 

because the station was under maintenance. 

 

Figure 1. PRD region consists of Guangzhou (GZ), Shenzhen (SZ), Zhuhai (ZH), Dongguan (DG), Foshan (FS), Huizhou (HZ), 

Zhongshan (ZS), Zhaoqing (ZQ), and Jiangmen (JM). The sampling site WQS is located in the central area of this region. 135 

 

2.2 Chemical analysis 

The organic carbon (OC) and elemental carbon (EC) were determined by the thermo–optical transmittance (TOT) 

method (NIOSH, 1999) using an OC/EC analyzer (Sunset Laboratory Inc., USA), with a punch (1.5 × 1.0 cm) of the sampled 

filters. For the water–soluble inorganic ions, a punch (5.06 cm2) of the filters was extracted twice with 10 ml ultrapure Milli–140 

Q water (18.2 MΩ cm/25 °C) each for 15 min using an ultrasonic ice–water bath. The total water extracts (20 ml) were filtered 

through a 0.22 μm pore size filter and then stored in a pre–cleaned HDPE bottle. The cations (i.e., Na+, NH4
+, K+, Mg2+, and 

Ca2+) and anions (i.e., Cl−, NO3
−, and SO4

2−) were analyzed with an ion–chromatography system (Metrohm, 883 Basic IC plus). 

Cations were measured using a Metrohm Metrosep C4–100 column with 2 mmol L−1 sulfuric acid as the eluent. Anions were 
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measured using a Metrohm Metrosep A sup 5–150 column equipped with a suppressor. The anion eluent was a solution of 3.2 145 

mmol L−1 Na2CO3 and 1.0 mmol L−1 NaHCO3.  

 

2.3 Quality assurance/quality control (QA/QC) 

Field and laboratory blank samples were analyzed in the same way as field samples. All the OC/EC and cation/anion 

data were corrected using the field blanks. The method detection limits (MDLs) were 0.01–0.05 μg m−3 for the OC, EC, cations, 150 

and anions. Ion balance was employed as a quality control check in the anion/cation analysis. A significant linear correlation 

(R2 = 0.97) was observed between anions and cations, with a slope of 0.82 for all PM2.5 samples. This slope, being close to 

unity, indicated that all the significant ions were resolved. Before data analyze, all data were manually inspected and outliers 

(i.e., X75%+3(X75%−X25%)) were removed to rule out the influence of extreme concentrations on overall trends. 

 155 

2.4 Estimation of primary organic carbon (POC) and secondary organic carbon (SOC) 

EC is a product of carbon fuel–based combustion processes and is exclusively associated with primary emissions, 

whereas OC can be from both direct emissions and be formed through secondary pathways. Differentiation between primary 

organic carbon (POC) and secondary organic carbon (SOC) is indispensable for probing atmospheric aging processes of 

organic aerosols. EC–tracer method was widely used to estimate POC and SOC (Turpin and Huntzicker, 1991; 1995). However, 160 

a previous study revealed that EC–tracer method would return higher estimation of SOC (Kim et al., 2012). Recently, Liao et 

al. (2023) proposed Bayesian Inference Approach and suggested it had significant advantages in accurately estimating POC 

and SOC compared to the conventional method, such as EC–tracer method, minimum ratio value, minimum R squared, and 

multiple linear regression. In this study, we used Bayesian Inference Approach which has the convenience of relying only on 

the commonly available mass concentrations of EC and SO4
2– to estimate POC and SOC. They can be calculated as following: 165 

SOC = KEC × [EC] + KSO42– × [SO4
2–]                                 (1) 

POC = OC – SOC                                             (2) 

Where KEC and KSO42– are parameters calculated by Bayesian Inference Approach in R language, the details can be found in 

previous research (Liao et al., 2023). The variations of K value are shown in Fig. S1. Given intense photochemical reactions 

and larger fractions of aged aerosols in the PRD, a higher conversion factor of 2.4 was employed to convert SOC to SOA (Yan 170 

et al., 2020). 
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3. Results and discussion  

3.1 Long–term trends of PM2.5 and its chemical composition  

In response to severe particle pollution, the Chinese government issued the Air Pollution Prevention and Control Action 175 

Plan in 2013. Due to the strengthened emission controls in the PRD, primary pollutants have been reduced significantly over 

the past decades (Bian et al., 2019). Based on daily PM2.5 concentrations in our samples, we divided the data into five groups 

according to interim targets recommended by the Worle Health Organization (WHO) in 2021 (World Health Organization, 

2021): IT0 ( PM2.5 > 75 μg m−3), IT1 (75 μg m−3 > PM2.5 > 50 μg m−3), IT2 (50 μg m−3 > PM2.5 > 37.5 μg m−3), IT3 (37.5 μg 

m−3 > PM2.5 > 25 μg m−3), and IT4 (25 μg m−3 > PM2.5). The majority of samples fell into T0 and T1 categories (41%–100%) 180 

before 2013, while this ratio quickly decreased (8%–60%) during 2013–2020 (Fig. S2), indicating successful implementation 

of air pollution mitigation strategies after 2013.  

Annual average concentrations of PM2.5 and its chemical composition are presented in Fig. 2a. From 2007 to 2020, PM2.5 

concentrations exhibited a significant decline from 87.1 ± 15.5 μg m−3 to 34.0 ± 11.3 μg m−3, at a rate of –4.0 μg m−3 yr
–1 (p < 

0.01). This trend aligns with the previous results from meta–analysis (–3.9 μg m−3 yr
–1) and regional simulation (–4.0 μg m−3 185 

yr
–1) in the PRD (Yan et al., 2020; Zhang et al., 2019), affirming WQS can serve as a regional background site. During this 

period of air quality improvement, OM (defined as OC  1.6) (Yang et al., 2023) remained the most abundant component 

(25%–47%) in PM2.5, followed by SO4
2− (16%–26%), NO3

− (7%–18%), NH4
+ (7%–10%) and EC (3%–8%). Other ions, such 

as Cl−, Na+, K+, Mg2+, and Ca2+, contributed less than 3% each to the mass of PM2.5. In China, desulfurization regulation for 

power plants was enforced around 2005, resulting in a notable decline (–7%) in the proportion of SO4
2− (Fig. 2b-c). However, 190 

the installation of denitrification devices on power plants began in late 2011 and started to take effect in 2012. With the delayed 

implementation of NOx emissions control measures compared to those for SO2 (Fu et al., 2014; Geng et al., 2017; Qu et al., 

2017; Reuter et al., 2014), the mass fractions of NO3
− increased by 10%. By the end of 2020, the proportion of NO3

− had 

doubled compared to 2007, approaching the level of SO4
2−. The proportion of OM also increased from 36% to 43%. 

Consequently, future air pollution control efforts need to focus on reducing OM and NO3
− concentrations to continue improving 195 

air quality in the PRD region. 
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Figure 2. (a) Trends of PM2.5 and its major components. Bars represent concentrations of chemical compositions and circles 

represent concentrations of PM2.5 in different studies. (b), (c) The comparison of the mass fractions of major components in 2007 and 

2022. 200 

 

The chemical composition of PM2.5 can be categorized into primary species and secondary species. Primary species 

consist of POA, EC, metal ions (e.g., Cl−, Na+, K+, Mg2+, Ca2+ etc.). Secondary species include SOA and SIA (SO4
2−, NO3

−, 

and NH4
+). Our results indicated that secondary species consistently dominated over primary species in PM2.5 composition, 

accounting for 54% to 79% of the total mass (Fig. 3a). Additionally, secondary species declined at a faster rate (–2.45 μg m−3 205 

yr
–1, p < 0.01) compared to primary species (–1.48 μg m−3 yr

–1, p < 0.01), indicating reduction of secondary species had more 

contribution in particulate pollution mitigation. Although Yan et al. (2020) also observed a decline trend in concentrations of 

secondary species after 2008 in the PRD, the proportion of secondary species was stable around 80%, which was higher than 

our study. This might stem from the fact that the EC–tracer method applied by the previous study would return higher 

estimation of SOC, which made secondary species increase (Kim et al., 2012). Our result suggested that the average 210 
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concentration of SOC estimated by the Bayesian Inference Approach was ~30% lower than that by the EC–tracer method and 

more reliable (Fig. S3). We calculated K values on an annual basis to further estimate SOC, whereas Yan et al. used a fixed 

value of (OC/EC)pri (the minimum value of all collected data) to estimate SOC. As a result, the proportion of secondary species 

in this study showed greater variability than that of Yan et al. Additionally, we analyzed the proportion of secondary species 

under different pollution levels. Fig. 3b showed that the mass fraction of secondary species increased significantly from 57% 215 

to 73% with the improvement of air quality (from IT0 to IT4). This meant secondary species play an increasingly prominent 

role in lower PM2.5 levels. 

 

Figure 3. Primary and secondary species variations during 2007–2020 (a) and their variations under different pollutants levels (b). 

Bars represent concentrations of them and circles represent the mass proportion of secondary species in PM2.5. Secondary species 220 

(accounts for 54%–79%) dominated over primary species. The proportion of secondary species increased from 57% to 73% with 

improvement of air quality (From IT0 to IT4).  
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3.2 Annual variations of primary species and secondary species 

3.2.1 Primary species 225 

The trends of individual components in PM2.5 can be seen in Fig. S4–5. POA exhibited the most significant decline at a 

rate of –0.97 μg m–3 yr–1 (–9% yr–1, p < 0.01). EC serves as a tracer for primary combustion, K+ serves as a tracer for biomass 

burning, and Ca2+ could be applied to track dust-related sources (Turpin and Huntzicker, 1991; Zhu et al., 2017). Despite the 

slight decline in their concentrations, our result showed that the relative reductions of EC (–9% yr–1), K+ (–12%) and Ca2+ (–

11% yr–1) were greater than that of PM2.5 (–7% yr-1), confirming that control measures for these sources had been effective. 230 

Cl– and Na+ also showed decline trends at rates of –0.10 μg m–3 yr–1 (–10% yr–1), –0.05 μg m–3 yr–1 (–9% yr–1), respectively (p 

< 0.01). Marine emission is considered the biggest source of Cl– in fine particle. However, anthropogenic sources such as coal 

combustion and biomass burning also had non–negligible impacts on it (Luo et al., 2019). After excluding the influence of 

anthropogenic sources (Text S1 and Fig. S6), Cl⁻ showed only a slight decline (–2% yr⁻¹), suggesting that the contribution 

from marine emissions to PM2.5 remained largely stable. 235 

 

3.2.2 Secondary species 

SO4
2– showed a clear decrease at –1.13 μg m–3 yr–1 (–10% yr–1, p < 0.01), whereas NO3

– and NH4
+ showed moderate 

declines (–0.40 μg m–3 yr–1, –6% yr–1; –0.31 μg m–3 yr–1, –6% yr–1, respectively, p < 0.05). Strong correlations between SO4
2–

/SO2, as well as between NO3
–/NO2 were observed (Fig. S7), suggesting that reductions of SO4

2– and NO3
– were mainly driven 240 

by reductions of their gaseous precursors. With relative humidity (RH) rising, the slopes of SO4
2–/SO2, as well as NO3

–/NO2, 

increased, indicating enhanced conversion of primary pollutants to secondary species. The generally lower intercepts observed 

in the NO3
–/NO2 regression compared to those in the SO4

2–/SO2 regression could be explained by the semi-volatile nature of 

nitrate. When NO2 levels are low, the accumulation of nitrate is hindered due to volatilization losses. In contrast, sulfate is the 

least volatile among all the inorganic aerosol components (Kang et al., 2022), allowing it to persist even at low SO2 245 

concentrations. Notably, SO4
2– reduction (–10% yr

–1) lagged behind SO2 reduction (–13% yr–1), while NO3
− reduction (–6% 

yr–1) outpaced that of NO2 (–3% yr–1) (Fig. 4). Other studies have also observed these disproportionate changes, but the reasons 

behind remained unclear (Chow et al., 2022; Yan et al., 2020; Geng et al., 2019; Blanchard et al., 2013).  
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Figure 4. (a) Annual variations of SO4
2− and SO2. (b) Annual variations of NO3

− and NO2. The shaded region indicates the uncertainty 250 

bounds. One asterisk, two asterisks denote p value < 0.05, 0.01, respectively. In the PRD, SO4
2− and SO2 showed a more significant 

decline than NO3
− and NO2. The reduction of SO4

2− (–10% yr–1) was slower than SO2 (–13% yr–1), while reduction of NO3
− (–6% yr–

1) was faster than NO2 (–3% yr–1). 

 

Here, we calculated SOR and NOR (Li et al., 2023) described in equations (3–4), where n refers to the molar 255 

concentration. The higher SOR and NOR represent more efficient conversion of gaseous species into secondary aerosols. 

𝑆𝑂𝑅 =  
𝑛[𝑆𝑂4

2−]

𝑛[𝑆𝑂4
2−] +  𝑛[𝑆𝑂2]

                                     (3) 

𝑁𝑂𝑅 =  
𝑛[𝑁𝑂3

−]

𝑛[𝑁𝑂3
−] + 𝑛[𝑁𝑂2]

                     (4) 
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As shown in Fig 5a, a dramatic increase in SOR was observed during 2007–2020 (p < 0.05). The SOR value in 2020 

(0.24 ± 0.09) was twice as high as that in 2008 (0.12 ± 0.07). The more efficient SO4
2– formation from SO2 oxidation slowed 260 

down the reduction of SO4
2− alongside decreasing SO2 levels. Gas–phase oxidation of SO2 followed by neutralization and 

aerosol phase condensation, is an important SO4
2− formation pathway (Berndt et al., 2023). Heterogeneous processes, including 

SO2 transfer to the aerosol phase, dissolution, and oxidation by oxidants such as H2O2 and O3, also contribute significantly in 

polluted regions (Wang et al., 2016; Liu et al., 2021). The solubility and effective Henry’s law constant of SO2 are positively 

pH-dependent (Seinfeld et al., 1998). Higher pH promotes the dissolution of SO2 in water, which will enhance SO4
2− formation. 265 

ALWC plays a key role in determining the aqueous oxidation rate and mass transfer. In addition, high temperature can facilitate 

both gas–phase and aqueous–phase reactions. As shown in Fig. S8, there were strong positive correlations between SOR and 

O3 (r = 0.45), temperature (r = 0.48), as well as ALWC (r = 0.23). But there was no significant correlation between SOR and 

pH. A possible explanation is that hydrogen ions facilitate aqueous-phase oxidation of SO2 by H2O2, which will offset the 

effect of reduced SO2 solubility under low pH conditions (Liu et al., 2021). To assess the impacts of these factors on SOR and 270 

eliminate dimensional and order of magnitude effects, a normalized multiple linear regression was developed as below: 

SOR = 0.025 × O3 + 0.017 × ALWC + 0.019 × Temperature + 0.190              (5) 

The prediction of SOR showed good agreement with the observations (Fig. S9a). The larger regression coefficients of O3 and 

temperature, along with their stronger correlations with SOR, suggested that the increase of SOR was mainly driven by the 

two factors. Our result showed that ALWC exhibited a downward trend (Fig. 6b), which exerted a negative influence on SOR. 275 

Although O3 concentration did not show an obvious trend at our measurement station (Fig. S10a), a previous study suggested 

that there was a rapid increase of O3 in the PRD after 2013 (Cao et al., 2024). Meanwhile, the temperature also rose slightly (p 

< 0.05) during the past decade (Fig. S10b). Consequently, a significant upward trend was observed in SOR.  

NOR did not show a clear trend, but the average values before 2013 (NOR > 0.07) were higher than those in later years 

(NOR < 0.07) (Fig. 5b, t–test, p < 0.01). This meant that conversion of NO2 into NO3
– became weaker, resulting in a greater 280 

reduction in NO3
– compared to NO2. NO3

– can be formed during both daytime and nighttime. During the day, HNO3 is produced 

via the gas–phase reaction between OH and NO2 and then neutralized by NH3 to produce NO3
– (R1–R2) (Calvert and Stockwell, 

1983). During nighttime, NO2 can also be oxidized by O3 to generate NO3 which further reacts with NO2 to produce N2O5. 

Heterogeneous uptake of N2O5 is a vital nitrate formation pathway during nighttime (R3–R5) (Finlayson-Pitts et al., 1989). 

Fig. S11 showed that there were positive correlations between NOR and O3 (r = 0.12), pH (r = 0.25), as well as ALWC (r = 285 

0.55). Different from SOR, higher temperature prevents N2O5 formation and promotes evaporation of HNO3 from particle–

phase to gas–phase, resulting a negative correlation between NOR and temperature (r = –0.18). The result of normalized 

multiple linear regression for NOR is as below: 
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NOR = 0.012 × O3 + 0.025 × ALWC – 0.011 × Temperature + 0.008 × pH + 0.081         (6) 

The prediction of NOR showed good agreement with the observations (Fig. S9b). The largest regression coefficient and the 290 

strongest correlation between ALWC and NOR suggested that NOR was more sensitive to the changes in ALWC. Lower 

ALWC after 2013 (Fig. 6b) did not favor heterogeneous nitrate formation, this overall lower NOR led to larger reduction in 

NO3
– compared to NO2.  

OH (g) + NO2 (g) + M → HNO3 (g) + M                            (R1) 

HNO3(g) + NH3 (g) ↔ NO3
–(aq) + NH4

+(aq)                          (R2) 295 

NO2 (g) + O3 (g) → NO3 (g)                                      (R3) 

NO2 (g) + NO3 (g) + M ↔ N2O5 (g)+ M                             (R4) 

N2O5 (g) + H2O (aq)+ Cl
–(aq) ↔ (2–∅)NO3

–(aq) + ∅ClNO2              (R5) 

The gas-particle conversion of NH3 could be affected by anions in particle–phase. Due to the decrease of 2 × n(SO4
2–) + 

n(NO3
–) (Fig. S12), less NH3 was needed to neutralize H2SO4 and HNO3. This resulted in a slight decline in NH4

+ (–0.31 μg 300 

m–3 yr–1, p < 0.01), while NH3 emissions remained steady (Geng et al., 2019).  

SOA is formed through the oxidation of VOCs, followed by gas–particle partitioning. Although VOCs emission kept 

rising (Bian et al., 2019; Guo et al., 2024) and concentration of O3 fluctuated (Fig. S10a) during the past decade, SOA declined 

significantly (–0.74 μg m–3 yr–1, p < 0.01). This could result from the reductions in aerosol acidity and ALWC (which will be 

discussed in Sect. 3.3). As SOA accounted for more than 50% of OM, more efforts are needed to reduce it. 305 
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Figure 5. The variations of SOR (a) and NOR (b). A dramatic increase in SOR was observed (p < 0.05) and the SOR value in 2020 

(0.24 ± 0.09) was twice as high as that in 2008 (0.12 ± 0.07). Although there was no significant trend in NOR, the value before 2012 

was higher than that after 2013. 

 310 

 

https://doi.org/10.5194/egusphere-2025-2204
Preprint. Discussion started: 28 May 2025
c© Author(s) 2025. CC BY 4.0 License.



 

16 

 

3.3 Impact of changes of major components on aerosol pH and ALWC  

ISORROPIA II, a thermodynamic equilibrium model for the K+ – Ca2+ – Mg2+– NH4
+ – Na+ – SO4

2− – NO3
− – Cl− – H2O 

aerosol system (Fountoukis and Nenes, 2007), has been widely applied to estimate aerosol pH and ALWC. Here, we applied 

ISORROPIA–Ⅱ to estimate aerosol pH and ALWC from 2007 to 2020. Due to the unavailability of gas–phase concentrations 315 

of HNO3, HCl, and NH3 during our campaign period, we conducted four iterations to produce the result optimally (Text S2, 

Fig. S13–14). The annual variations of pH and ALWC are shown in Fig. 6. As discussed earlier, the reductions in acidic 

components (SO4
2– and NO3

–) were greater than that in the alkaline component (NH4
+), leading to a significant decrease in 

acidity. Aerosol pH increased from 1.51 ± 1.07 to 3.29 ± 1.43, at a rate of 0.06 yr–1 (p < 0.05). A sharp increase of aerosol pH 

occurred during 2007–2012 due to rapid decline of SO4
2– during this period. As Fu et al. (2015) did not include the gas–phase 320 

data in pH calculation, the pH values reported by them (-1.11–0.81) were significantly lower than those in this study (1.51–

2.60) during the same period. Our results showed that ALWC decreased from 20.5 ± 10.0 to 8.7 ± 4.5 μg m−3, at a rate of –1.1 

μg m–3 yr–1 (p < 0.01). Unexpectedly, low ALWC was observed in 2008 when SIA concentrations, which enhance the 

hygroscopicity of particulate matter, were at very high levels. It might be associated with low RH (Table S1). To eliminate the 

influence of changes in meteorological conditions, we used annual average temperature and RH during the entire campaign 325 

period as input to recalculate pH and ALWC. The results showed a clear enhancement of ALWC in 2008 (Fig. S15), and the 

upward trend in pH and downward trend in ALWC still persisted. This demonstrated the long–term trends of pH and ALWC 

were mainly driven by the changes in chemical composition of PM2.5. As we discussed in Sect. 3.2.2, ALWC exhibited positive 

correlations with SOR and NOR. This indicated a positive feedback mechanism in which the reductions in hygroscopic 

components (e.g., sulfate and nitrate) leaded to lower ALWC, thereby suppressing SIA formation. Recent studies demonstrated 330 

that high aerosol acidity, ALWC, and O3 facilitated SOA formation (Zhang et al., 2024; Zhang et al., 2022b; Ma et al., 2024). 

Our results also showed that SOA was positively correlated with ALWC and O3, but negatively correlated with pH (Fig. S16). 

In this study, SOA declined significantly (Fig. S5) while the emission of VOCs (Bian et al., 2019; Guo et al., 2024) and O3 

(Cao et al., 2024) kept rising in the PRD. Consequently, the trend of SOA was mainly driven by the reductions in aerosol 

acidity and ALWC. 335 
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Figure 6. (a) Annual average pH increased at a rate of 0.06 yr–1. (b) Annual average ALWC decreased at a rate of –1.1 μg m−3 yr–1. 

 

We further investigated changes in pH and ALWC under different pollution levels. As Fig. S17 presented, low pH 

occurred under elevated pollutant level (IT0), while pH values were close under other levels (IT1–IT4). Additionally, there 340 

was no significant difference between the recalculated pH (eliminating the influence of meteorological factors) and the original 

one, indicating limited impacts of variations of temperature and RH on aerosol acidity. ALWC showed a clear decline pattern 

with decreasing pollutant levels (IT0–IT4). A significant difference (18%–35%, p < 0.01) was observed between the 
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recalculation and original results under IT2–IT4, indicating temperature and RH also exerted a significant influence on ALWC 

under lower pollution levels. 345 

 

3.4 Impact of changes of major components on extinction coefficient 

We adopted MSE/MAE suggested by Fu et al. (2016) and relationship between chemical composition and f(RH) 

suggested by Li et al. (2021) to reconstruct bext using equations (5-8). [AS], [AN], [SS], [LAC] refer to mass concentrations (μg 

m–3) of NH4SO4, NH4NO3, sea salt, and EC, respectively. The details of PM2.5 reconstruction method followed the previous 350 

study (Chow et al., 2015), i.e., AS = 1.375 × SO4
2–, AN = 1.29 × NO3

–, LAC = EC and SS = 1.8 × Cl–. RHref was threshold of 

high RH, 40% was used here.  

bext = 6.5 × [OM] +2.6 × f(RH) × [AS] + 2.4 × f(RH) × [AN] + 7.3 × f(RH)
ss

× [SS] + 7.7 × [LAC]      (5) 

f(RH) = [ (1-RH) (1-⁄  RHref)] 
-γ

       (6) 

γ = 0.48 × F + 0.59       (7) 355 

F = (OC+EC) (OC+EC+SO4
2-+NO3

- +NH4
+⁄ )       (8) 

Our results showed that bext in the PRD decreased significantly at a rate of -21.44 Mm–1 yr–1 (p < 0.01), aligning with the 

overall decline of PM2.5 (Fig. 7). However, the highest bext was unexpectedly observed in 2009, even though PM2.5 

concentration was lower than 2007 and 2008. This anomaly could result from the highest RH in 2009. As illustrated in Fig. 

S18, OM dominated bext (44%–61%), followed by (NH4)2SO4 (15%–28%) and NH4NO3 (6%–13%). The proportion of SIA (F) 360 

fluctuated during 2007–2020, which leaded to a change in f(RH) and then further influenced bext. As a result, we found that 

the chemical budget of bext from (NH4)2SO4 did not exhibit a continuous decline trend, while the mass concentration and 

proportion of SO4
2– in PM2.5 decreased significantly.  

We also calculated bext by IMPROVE formula and compared to the local parameter scheme (Fig. S19). Generally, bext 

estimated by IMPROVE formula (335.72 ± 219.64 Mm–1) was significantly higher than that estimated by local parameter 365 

scheme (262.67 ± 143.82 Mm–1). We further investigated this discrepancy under different pollution levels. With the 

improvement in air quality, the difference between the two schemes narrowed gradually (p < 0.01). Our results indicated that 

the IMPROVE equation tend to overestimate bext in elevated pollution periods. Thus, more site–specific parameters and local 

parameter scheme are needed in those areas to predict bext more accurately. 
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 370 

Figure 7. Light extinction coefficient (bext) in WQS during 2007–2020. It declined at a rate of –21.44 Mm
–1 yr

–1 significantly (p < 0.01) 

and its trend aligned with that of PM2.5. 

 

4. Conclusions 

In this study, we conducted field measurements of PM2.5 mass concentrations and its chemical composition at the PRD 375 

regional background site during 2007–2020. PM2.5 levels showed a significant decline from 87.1 ± 15.5 μg m–3 to 34.0 ± 11.3 

μg m–3 at a rate of –4.0 μg m–3 yr–1. Secondary species (54%–79%) dominated over primary species, although the proportion 

was lower than that reported in a previous study (~80%) in the PRD. This discrepancy could be attributed to an overestimation 

of SOC caused by the EC-tracer method employed in the previous study. In addition, the mass fraction of secondary species 

increased with the improvement in air quality, suggesting greater attention should be given to them under cleaner conditions. 380 

Among primary species, POA, EC, K+ and Ca2+ exhibited significant declines. This indicated that control measures for 

combustion emissions, biomass burning and dust-related sources were effective. SIA displayed rapid downward trends among 

secondary species, particularly for SO4
2–. Due to the delayed control of NOx emissions compared to SO2, mass fractions of 

SO4
2– decreased from 26.0% to 18.6% while NO3

– increased from 7.7% to 17.5%. By the end of 2020, the proportion of NO3
− 

had doubled compared to 2007, approaching the level of SO4
2−. Although many previous studies have observed the 385 

disproportionate changes in SO4
2–/SO2 and NO3

–/NO2, underlying causes remained unclear. In this study, we found the 

disproportionate reductions in SO4
2– (–10% yr

–1) compared to SO2 (–13% yr–1), and in NO3
– (–6% yr–1) compared to NO2 (–

3% yr–1), which were attributed to an increase in SOR and a decrease in NOR, respectively. Correlation analysis indicated that 

SOR was primarily influenced by O3 and temperature, whereas NOR was driven by ALWC. 
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 Aerosol pH and ALWC were estimated using ISORROAPIA–Ⅱ. Due to the unavailability of gas–phase concentrations 390 

of HNO3, HCl, and NH3 during our campaign period, we propose a reliable approach involving four iterative calculations to 

obtain optimal results. Our results showed that aerosol pH increased from 1.51 ± 1.07 to 3.29 ± 1.43 at a rate of 0.06 yr–1. 

Consistent with previous studies, we found that the impacts of meteorological factors on aerosol pH were limited, while the 

changes in PM2.5 components significantly influence aerosol pH. ALWC decreased significantly at a rate of –1.1 μg m–3 yr–1 

and showed a clear decline pattern with decreasing pollutant levels. This might indicate presence of a positive feedback 395 

mechanism between ALWC and hygroscopic components. Given the critical roles of acidity and ALWC in the formation of 

secondary species, the reductions in acidity and ALWC caused by changes in PM2.5 major components may also suppress the 

formation of SOA in the atmosphere.  

In addition, air visibility greatly improved with decline of PM2.5 chemical components. We used a local parameter scheme 

to calculate bext and demonstrated that it decreased at a rate of –21.44 Mm–1 yr–1. The IMRPOVE formula, which employs the 400 

fixed f(RH), may lead to overestimation of bext under high pollution conditions. Thus, more site–specific parameters and local 

parameter scheme are needed in those areas to predict bext more accurately. 

This study highlights that the changes in PM2.5 chemical composition can significantly affect key aerosol 

physicochemical properties, such as aerosol pH, ALWC, and light extinction coefficient. The variations of aerosol pH and 

ALWC can, in turn, influence the formation of secondary species. Since the importance of secondary species will become 405 

more prominent with continuous air quality improvement, more efforts should focus on them in the future. 
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